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Abstract
In [3], a new method has been presented for making inference about the tail of samples coming from un-
known heavy-tailed distribution. Method is based on asymptotic properties of the empirical structure func-
tion, a variant of statistic that resembles usual sample moments. Using this approach one can successfully
inspect the nature of the tail of the underlying distribution, as well as provide estimated values on the un-
known tail index. Here we briefly describe the method and test its performance on some simulated and real
world data by comparing it with the well known Hill estimator.
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1 Introduction
Heavy-tailed distributions are of considerable importance in modeling a wide range of phenomena in finance,
geology, hydrology, physics, queuing theory and telecommunication. Since the work of Mandelbrot [4],
where stable distributions with index less than 2 have been advocated for describing fluctuations of cotton
prices, there has been an exhausting research concerning the use of heavy-tailed distribution in the context
of finance.
We define that the distribution of some random variable X is heavy-tailed with index α > 0 if it has a
regularly varying tail with index −α, i.e.

P (|X| > x) =
L(x)

xα
, |x| → ∞,

where L(t), t > 0, is a slowly varying function, i.e., L(tx)/L(x) → 1 as |x| → ∞, for every t > 0. In
particular, this implies that E|X|q < ∞ for q < α and E|X|q = ∞ for q > α, which can be used as
the alternative definition. We are interested in the estimation of the unknown tail index α, measuring the
”thickness” of the tails, based on the finite data sample with no additional assumptions on the distribution of
the data.
There exists a range of estimators for this particular problem. The most well known estimators are the
Pickand’s, Hill and moment estimator by Dekkers, Einmahl and de Haan. A nice survey of these estimators
and their properties can be found in [2] and [1]. Tail index estimators are usually based on upper order statis-
tics and their asymptotic properties. As an alternative, [5] proposed an estimator based on the asymptotics
of the partial sum. In this paper we present a novel approach given in [3]. We evaluate the performance
of this estimator on some real world examples and compare it with probably the most popular one, the Hill
estimator.
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2 Estimation method
The estimator presented in [3] is based on asymptotic properties of the empirical structure function (also
called partition function), a kind of statistic that resembles usual sample moments. More precisely, given
a sample X1, . . . , Xn coming from a strictly stationary stochastic process {Xt, t ∈ Z+} (discrete time) or
{Xt, t ∈ R+} (continuous time) which has a heavy-tailed marginal distribution with unknown tail index α,
define

Sq(n, t) =
1

bn/tc

bn/tc∑
i=1

∣∣∣∣∣∣
btc∑
j=1

Xt(i−1)+j

∣∣∣∣∣∣
q

, (1)

where q > 0 and 1 ≤ t ≤ n. In words, we partition the data into consecutive blocks of length btc, then sum
each block and take the power q of the absolute value of the sum. Finally, we average over all bn/tc blocks.
Notice that for t = 1 one gets the usual empirical q-th absolute moment.
Asymptotic properties of Sq(n, t) have been considered before in the context of multifractality detection
(see [3] and the references therein). Instead of keeping t fixed, we take it to be of the form t = ns for some
s ∈ (0, 1), which allows the blocks to grow as the sample size increases. It is clear that then Sq(n, ns)
will diverge since s > 0. The quantity of interest is the rate of divergence of this statistic, i.e. we consider
the limiting behavior of lnSq(n, n

s)/ lnn. This has been established in [3] under the assumptions of strict
stationarity of the sequence Xt, t ∈ Z+ and mild dependence condition in the form of the strong mixing
property with an exponentially decaying rate (for details see [3]). It is also assumed that the expectation is
zero in case when it is finite. The proof of the theorem can be found in [3].

Theorem 2.1. Suppose Xt, t ∈ Z+ is a strictly stationary sequence that has a strong mixing property with
an exponentially decaying rate and suppose that Xt, t ∈ Z+ has a heavy-tailed marginal distribution with
tail index α > 0. Suppose also that EXi = 0 when α > 1. Then for q > 0 and every s ∈ (0, 1)

lnSq(n, n
s)

lnn

P→ Rα(q, s) :=


sq
α , if q ≤ α and α ≤ 2,

s+ q
α − 1, if q > α and α ≤ 2,

sq
2 , if q ≤ α and α > 2,

max
{
s+ q

α − 1, sq2
}
, if q > α and α > 2,

(2)

as n→∞, where P→ stands for convergence in probability.

It is clear that the limit considered in the preceding theorem heavily depends on the tail index α, which
makes it possible to make inference about the unknown tail index. First notice that if for some non-
negative sequence {Zn} of random variables lnZn/ lnn

P→ a ∈ R, then for some function M such that
lnM(n)/ lnn → 0, Zn/naM(n)

d→ Z as n → ∞, where Z is a random variable not identically equal to
zero (possible degenerate). So, it follows from Theorem 2.1 that εn :=

Sq(n,n
s)

nRα(q,s)M(n)

d→ ε, where ε is a
random variable not identically equal to zero. By simply rewriting this, one arrives at the

lnSq(n, n
s)

lnn
= Rα(q, s) +

lnM(n)

lnn
+

ln εn
lnn

. (3)

This equation can be seen as the regression model. The term ln εn/ lnn can be considered as an error term
in the regression of lnSq(n, n

s)/ lnn on q and s. One should count on the intercept in the model, in order
to compensate for the lnM(n)/ lnn term. The possible nonzero mean of an error can be subtracted and
considered as a part of the intercept.
The basic idea of the approach presented in [3] is to estimate the tail index α by the means of Equation (3).
To avoid bivariate regression, one can assume the limit is linear in s, i.e. Rα(q, s) = τ(q)s + c(q). This
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holds exactly except in the case q > α > 2. By theoretically regressing lnSq(n, n
s)/ lnn on s, for a range

of values s ∈ (0, 1), one gets the expression for τ(q) (notice that this is obvious in case α ≤ 2):

τ(q) =


q
α , if 0 < q ≤ α & α ≤ 2,

1, if q > α & α ≤ 2,
q
2 , if 0 < q ≤ α & α > 2,
q
2 + 2(α−q)2(2α+4q−3αq)

α3(2−q)2 , if q > α & α > 2.

(4)

τ(q) is refereed to as the scaling function. When α is large, i.e., α→∞, it follows from (4) that τ(q) = q/2.
This corresponds to data coming from a distribution with all moments finite, e.g., an independent normally
distributed sample. This line will be referred to as the baseline. Theoretical plots of scaling functions for a
range of α values are shown in Fig. 1. It is clear that the shape of the scaling function is heavily influenced
by the value of tail index α.

Figure 1: Plots of scaling function τ(q) against the moment q
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The baseline is shown by a dashed line. The case α ≤ 2 (α = 0.5, 1.0, 1.5) and α > 2 (α = 2.5, 3.0, 3.5, 4.0) are
shown by dot-dashed and solid lines, respectively.

Having a finite data sample, one can estimate τ(q) in a single point q as the slope in the simple linear
regression model by regressing lnSq(n, n

s)/ lnn on s, for a range of values of s ∈ (0, 1). More precisely,
fix q > 0 and for si ∈ (0, 1), i = 1, . . . ,m calculate Si = lnSq(n, n

si)/ lnn, i = 1, . . . ,m based on the
data sample. Now, estimate the value of the scaling function at the point q as(

τ̂(q), b̂
)

= arg min
(a,b)∈R2

m∑
i=1

(Si − asi − b)2
. (5)

Repeating this for a range of q makes it possible to give a plot of empirical scaling function τ̂ . By comparing
empirical scaling function with Fig. 1, one can make inference about the nature of the tails of the underlying
distribution. Moreover, by minimizing the difference between the theoretical scaling function (4) and the
empirical one τ̂(q) for some range of q ∈ (0, qmax) one can find the estimate for α. More precisely, for
points qi ∈ (0, qmax), i = 1, . . . , n, estimate τi = τ̂(qi) by the means of Equation (5). Estimator is defined
as

α̂ = arg min
α∈(0,∞)

m∑
i=1

k∑
j=1

(τi − τ(qi))
2. (6)
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Method is divided in two cases, α ≤ 2 and α > 2, in order to simplify the estimation procedure. Cases can
be distinguished graphically by plotting the empirical scaling function.

3 Examples and comparison with Hill estimator
In this section we test the performance of estimator (6) on some known data sets and compare it with the
Hill estimator. Let X(1) ≥ X(2) ≥ · · · ≥ X(n) denote the order statistics of the sample X1, X2, · · · Xn, and
kn be a sequence of positive integers satisfying 1 ≤ kn < n, limn→∞ kn = ∞, and limn→∞ (kn/n) = 0.
The Hill estimator based on kn upper order statistics is

α̂kn =

(
1

kn

kn∑
i=1

log
X(i)

X(kn+1)

)−1

. (7)

Hill estimator is known to be weakly consistent as well as strongly consistent and asymptotically normal
under certain conditions. For details see [2]. However, performance of the Hill estimator is heavily influ-
enced by the choice of kn. There is no generally accepted method on how to choose kn, and it is usually
recommended to plot the values for a range of kn values and to look for the part of the graph where the value
stabilizes. The resulting plot is usually called Hill plot.

3.1 Example 1 - non-constant slowly varying function in the tail
Hill estimator is known to behave poorly if the slowly varying function in the tail is far away from constant.
We compare this behavior with the performance of the estimator (6). Consider two distribution F1, F2

defined by their survival functions

F 1(x) = 1− F1(x) =
1

x
3
2

, x ≥ 1, (8)

F 2(x) = 1− F2(x) =
e

3
2

x
3
2 lnx

, x ≥ e. (9)

Both distributions are heavy-tailed with tail index equal to 3/2. We generate samples from these two dis-
tributions with 5000 observations. Corresponding Hill plots are shown in Figure 2(a). For F2, one could
wrongly conclude that the value of the tail index is around 2. The Hill’s method is highly sensitive to the
presence of non-constant slowly varying function in the tail. This is sometimes called Hill horror plot (see
[2]). Figure 2(b) shows empirical scaling functions for the same samples together with the theoretical one
and the baseline. One can see that scaling functions almost coincide with the theoretical one. Calculating
estimates using (6) yields values α̂1 = 1.441 and α̂2 = 1.5141. It seems that non-constant slowly varying
function affects the estimation but the effect is not so dramatical as for the Hill estimator. Most important
part of the scaling functions for the inference about the tail is before the breakpoint and the breakpoint itself.
For example, one can try estimating α only based on the values of τ̂(q) for q less than a breakpoint observed
graphically by fitting simple linear regression through origin. Theoretically, slope of the regression line
should be 1/α. For example above, using q ∈ (0, 1.5) one gets estimates for α: 1.454 for F1 and 1.527 for
F2.

3.2 Example 2 - non heavy-tailed distribution
For the next example we compare the behavior of two estimators when the underlying distribution is not
heavy-tailed. For this purpose, sample of 2000 observations was generated from standard logistic distribution
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Figure 2: Example 1

given by probability density function

f(x) =
e−x

(1 + e−x)2
, x ∈ R.

Figure 3(a) shows the Hill plot. It is impossible to draw any conclusion by only analyzing the Hill plot. This
is why it is always necessary to use some other techniques for detecting heavy tails in data samples. On the
other hand, estimated scaling function provides self contained characterization of the tail. From Figure 3(b)
one can surely doubt the existence of heavy-tails since the empirical scaling function almost coincides with
the baseline q/2.
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Figure 3: Scaling function

3.3 Example 3 - EUR/USD exchange rates
In this example we analyze daily closing rates of euro against U.S. dollar during the period 2007 − 2012.
The data consists of differences of rates and has 1868 observations. Hill plot is shown in Figure 4(a) and
corresponding scaling function in the Figure 4(b). Hill plot fails to stabilize, but one could say this happens
for kn around 100 yielding, for example, value α̂ = 3.133 for kn = 100. Scaling function evidently points
that the variance is finite since the break occurs after q = 2 and the plot coincides with the baseline before
the break. Estimation for the case α > 2 yields the value 3.112, consistent with the Hill estimator.
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Figure 4: Scaling function

3.4 Example 4 - daily log-returns of DAX
Next example again involves financial data. We use daily log-returns of the German stock index DAX
(September 20, 1988 - August 24, 1995), similar to Figure 6.4.12 in [2]. Hill plot in Figure 5(a) is made by
using absolute value of the data. Following [2], one can conclude that the plot stabilizes around 2.8 for 100 ≤
kn ≤ 300. However, plot fails to stabilize for larger kn, similar as in the Example 1. Data has been centered
for the estimation of the scaling function on Figure 5(b). Plot shows that α could be somewhere between 2
and 2.5. Calculating the estimate (6) yields the value 2.465. Thus, there is a significant discrepancy between
two estimates. Considering the inconclusiveness of the Hill plot, one could give preference to the estimate
(6).
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Figure 5: Scaling function
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